Forcing Axioms, Supercompact Cardinals, Singular Cardinal Combinatorics

نویسنده

  • Matteo Viale
چکیده

The purpose of this communication is to present some recent advances on the consequences that forcing axioms and large cardinals have on the combinatorics of singular cardinals. I will introduce a few examples of problems in singular cardinal combinatorics which can be fruitfully attacked using ideas and techniques coming from the theory of forcing axioms and then translate the results so obtained in suitable large cardinals properties. The first example I will treat is the proof that the proper forcing axiom PFA implies the singular cardinal hypothesis SCH, this will easily lead to a new proof of Solovay’s theorem that SCH holds above a strongly compact cardinal. I will also outline how some of the ideas involved in these proofs can be used as means to evaluate the “saturation” properties of models of strong forcing axioms like MM or PFA. The second example aims to show that the transfer principle (א +1,א ) (א2,א1) fails assuming Martin’s Maximum MM. Also in this case the result can be translated in a large cardinal property, however this requires a familiarity with a rather large fragment of Shelah’s pcf-theory. Only sketchy arguments will be given, the reader is referred to the forthcoming [25] and [38] for a thorough analysis of these problems and for detailed proofs. The singular cardinal problem. Cardinal arithmetic is a central subject in modern set theory and one of the key problems in this domain is to evaluate the gimel function κ → κcof(κ) for a singular cardinal κ. There are various reasons why this question has become so relevant. First of all it is a folklore result that the behavior of the exponential function κ is completely determined by the interplay between the gimel function and the powerset function → 2 restricted to the class of regular cardinals (see [15] I.5). Two standard exercises in a graduate course in set theory are to show Cantor’s

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-tame mouse from the failure of square at a singular

Building on the work of Schimmerling ([8]) and Steel ([14]), we show that the failure of square principle at a singular strong limit cardinal implies that there is a non-tame mouse. The proof presented is the first inductive step beyond L(R) of the core model induction that is aimed at getting a model of ADR + “Θ is regular” from the failure of square at a singular strong limit cardinal or PFA....

متن کامل

On the strength of PFA I∗†

Building on the work of Schimmerling ([11]) and Steel ([17]), we show that the failure of square principle at a singular strong limit cardinal implies that there is a non-tame mouse. This is the first step towards getting a model of ADR + “Θ is regular” from PFA via the core model induction. One of the wholly grails of inner model program has been determining the exact consistency strength of f...

متن کامل

Inner models with large cardinal features usually obtained by forcing

We construct a variety of inner models exhibiting features usually obtained by forcing over universes with large cardinals. For example, if there is a supercompact cardinal, then there is an inner model with a Laver indestructible supercompact cardinal. If there is a supercompact cardinal, then there is an inner model with a supercompact cardinal κ for which 2κ = κ+, another for which 2κ = κ++ ...

متن کامل

A Note on Strong Compactness and Supercompactness

In this note, we provide a new proof of Magidor's theorem that the least strongly compact cardinal can be the least supercompact cardinal. A classical theorem of Magidor [5] states that it is consistent, relative to the existence of a supercompact cardinal, for the least supercompact cardinal to be the least strongly compact cardinal. There are currently two different proofs of this fact—the or...

متن کامل

3 A ug 1 99 8 Universal Indestructibility

From a suitable large cardinal hypothesis, we provide a model with a supercompact cardinal in which universal indestructibility holds: every supercompact and partially supercompact cardinal κ is fully indestructible by <κ-directed closed forcing. Such a state of affairs is impossible with two supercompact cardinals or even with a cardinal which is supercompact beyond a measurable cardinal. Lave...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bulletin of Symbolic Logic

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2008